Trigonometry - Solving equations.
Test Yourself 2.
The questions below focus on the formats: |
1. Trig ratio and a constant. |
2. Squared trig ratio and a constant. |
3. Sin and cos terms but no constant. |
4. Trig ratios in a quadratic format. |
5. Using angles of any magnitude. |
6. Number of solutions. |
1. Trig ratio and a constant.
(solve all equations for |
1. | 2. .
Answer.120°, 240°. |
3. .
Answer.30°, 60°, 210°, 240°. |
4. | |
5. | 6. Solve 2sin θ cot θ + 1 = 0
Answer.0°, 180°, 360°, 120°, 240°. |
|
7. sin β = -0.6691.
Answer.β = 222°, 318°. |
8. | |
9. . | 10. | |
2. Squared trig ratio and a constant. | 11. | |
13. | ||
15. | ||
3. Sin and cos terms but no constant. | 17. sinx = cos(2x - 45°). Answer.45°. |
18. cos 3x = sin (x - 22°).
Answer.56°. |
19. sec x - 4cos x = 0
Answer.60°, 120°, 240°, 300°. |
20. Find θ if sin(θ + 20°) = cos (2θ - 50°). | |
21. . | 22. | |
23. (i) Simplify tan2A(1 - sin2A). (ii) Hence or otherwise solve tan2A(1 - sin2A) for 0 ≤ θ ≤ 360°) Answer.90°, 270°. |
24. | |
4. Trig ratios in a quadratic format. | 25. Solve 2cos2 x - 3 cos x + 1 = 0
Answer.0°, 60°, 300°, 360°. |
26. Solve 3tan4 x + 2tan2 x - 1 = 0
Answer.30°, 150°, 210°, 330°. |
27. 3 sec2 x - tanx - 5 = 0
Answer.45°, 146°19', 225°, 326°19'. |
28. 2cot2x - cosecx + 1 = 0
Answer.90°. |
|
29. 3 sinx - 2 tanx = 0
Answer.0°, 48° 11', 180°, 311° 49'. |
30. (i) Simplify 2cos2 X + 3sin2 X - 2.
(ii) Hence or otherwise solve: 2cos2 α + 3sin2 α - 2 = 0 Answer.(1) sin2α.(ii) 90°, 270°. |
|
5. Complementary or supplementary angles. (0 ≤ θ ≤ 360°). |
31. tan (3x + 15°) = cot (5x - 29°). Answer.13°. |
32. Given 3cos θ + 2 = 0 and that tan θ > 0, find the value of tan (θ - 180o). |
6. Number of solutions. | Find the solutions for (2sinx + 1)(cos x - 3) = 0. Answer.210° and 330°. |